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A Network Analogue Method For Computing the TEM

Characteristics of Planar Transmission Lines

BENGT L. LENNARTSSON, STUDENT MEMBER, IEEE

Ab.sfract-A network analogue method for calculation of the

capacitance matrix of certain two-dimensional multiconductor sys-
tems is presented. The system is contained in a finite or infinite
conducting rectangular boundary. An arbitrary number of parallel
dielectric layers can be present, and the conductors consist of an

arbitrary number of conducting strips at one or more of the dielectric

interfaces. The strips are assumed to have zero thickness.

1. INTRODUCTION

u

UNDER THE QUASI-TEM assumption the

different impedances and phase velocities for

planar transmission lines can be calculated from

the static capacitance matrix of the conductor system

[1]. Hence the analysis is reduced to the problem of

finding a solution of the two-dimensional Laplace’s

equation under the actual boundary conditions, In

many cases, however, a complete solution of Laplace’s

equation is not necessary, If, for instance, a Green func-

tion can be found, this contains all the information

needed for the derivation of the capacitance matrix.

Bryant and Weiss [2] and Weeks [3] have computed a

“dielectric Green function” from an integral equation.

Yarnashita and Atsuki [4] have derived trigonometric

series expressions of a Green function for structures

similar to those in Fig. 1. In this paper the capacitance

matrix is obtained via an entirely different approach,

the resistance network analogue. Network theory makes

it possible to reduce a set of difference equations with

millions of unknown potentials to a system of say one

hundred variables and, moreover, network theory sug-

gests ways to solve this latter system by direct methods.

II. DERIVATION OF THE BASIC MATRIX RELATIONS

The five-point discrete Laplacian relates the potential

at adjacent points in Fig. 2(a) according to (1).

@a+$b+$, +$d–4*o=o. (1)

Equation (1) is also the node equation of node “o” in

Fig. 2 (b), Hence if any advantages can be obtained one

may solve a network problem instead of the correspond-

ing Laplace’s difference equations. The potential dis-

tribution will be the same [5]. This idea has been used

for simulation of boundaries on a network model, but

also as a tool for a purely analytical approach [6].
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Fig. 1. Planar transmission lines, strips at one interface only.
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Fig. 2. The nodes of (a) the finite difference problem,
and (b) the related network.

Now let us consider the networks in Fig. 3. The

boundaries are at zero potential and the resistance and

conductance matrices are NXN. The definite terminal

resistance matrix RI in Fig. 3(a) is simply rlE, where E is
the N X N unit matrix, and the resistance of each resis-

tor is rI. In Fig. 3(b) a network has been connected in

parallel to that in Fig. 3(a). The matrix GI is thus the

sum of RI–l and the conductance matrix of the chain

constituted by the elements gl. From basic circuit theory

we have

G1 = RI–’ + glP (2)
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Fig.3. Networks illustrating the recurrence relations (2) and (4).
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In Fig. 3(c) resistors r, are connected in series to

terminal of the network in Fig. 3(b). Hence

R, = G,-l + 7,E = [RI-l + glP]-l + YZE.
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Fig. 4. A network analogue of the field problems in Fig. 1.

(7)

where the first term represents the chain at the inter-

face, the second the network below, and the third the

network above. G1 and G. are obtained from (5) and (6).

For instance, Gu = R~–l, where k = H1 +H2 and Gl

(3) =RH-l (Fig. 4). r, and g, are chosen according to (6).

The matrix GtiO~relates the terminal voltages to the ter-

minal currents in Fig. 4.

In the following, the recurrence relation (5a) is trans-

formed to diagonal form, and since inversion of a diago-

nal matrix just means inversion of its diagonal elements,

each the computing time can be reduced considerably.

II 1. DIAGONALIZATION OF THE RECURRENCE RELATION

(4) As P is symmetric, see (3), there is an orthogonal

The same procedure will be repeated when we connect a

conductance chain gl in parallel, a set of resistors in se-

ries, etc. The recurrence relation can obviously be written

Rk~l = [Rk–l + g@-l + Yk~tE (5a)

where

RI = YIE. (5b)

For the network analogue of the structures in Fig, 1 a

proper choice of the network elements [5] is

(6a)

where G = c,, for elements corresponding to material 1,

etc., and

(6b)

matrix A such that

A*PA = dia.g (Xl, X2, . . ., AN) (8a)

and

A*A = E (8b)

where the star denotes the transpose, and k are the

eigenvalues of P. The column vectors of A are the re-

lated normalized eigenvectors v;. Analytic expressions

for vi and ~; are known [7] and

(9)
‘i=4sin2[2(A 1,1

.—

‘“”= i;=si n(%) ’10)

Thus

2 ij7r
(A),,j = —j/

()
sin ——— . (11)

N + 1 N+l

at the interface between materials 1 and 2, etc. e,l, e,z,
From (5a) we now obtain by elementary matrix algebra

and t,$ are the equivalent relative dielectric constants of [~*&+~~ = (A* R~.4)–1 + g~ diag (kI, X2, . .

the materials.

., AN)]-’

Fig. 4 shows the network corresponding to the struc-
+ rk+,E. (12)

tures in Fig. 1. The matrix G,oti relates the potentials of Since RI= YIE, itfollows from (~b) that the right-hand

the nodes at the lower interface to the currents entering side of (12) is diagonal for k = 1, and thus the left mem-

these nodes, and Gtoh can be decomposed according to ber is also diagonal for k =1. Hence the right member is
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diagonal for k =2, and from mathematical induction it

now follows that A *RkA is diagonal for each k. If we

introduce the vector (cJ) ~ according to

(d+); = (A*R,A); ,,, i=l,2, . . ..N (13)

we can replace the matrix relation (5) by the much

simpler vector relation

1
(ak+l)i = + Tk+l, -i=l,2, . . .. N(l4a)

& + ghii

where

(a’), =?’,, ,.. .,N.i=l,2 (14b)

If HI or H3 in Fig. 4 is infinite, it is easy to obtain the

limit ask- m in (14a).

As an analytical expression for the eigenvalues Ai of P
is known, (14) are now well prepared for computer work.

It remains to compute G~Ot (7), or better its inverse Rto~.
That is done in the following way.

1) Let the computer perform (14) for k =1, 2, . . .,

HI +H2 – 1. rk and g, are obtained from (6a) and (6 b).

For convenience let us denote the resulting vector of this

procedure D%.

2) Let the computer perform (14) for k =1, 2, . . . .

H3 – 1, where rk and gk are chosen according to (6a).

Denote the resulting vector D1.
The elements of the matrix Rt~t = Gt~t–l are now ac-

cording to the Appendix obtained from

(Rtot)i,j = F(; – j) – F(i + j) (15)

VI –

V2

vk,-1

— ——

VA

i’A

— ——

vk,+l

— ——

vB

tiB

— — —

Vk4+l

tili _

—

where

()rnk
Cos —

F(m) = ~~
N+l

N + 1 k=l e,, + E,,

. (16)

~k + (D.)k + (Di)k
2

The auxiliary vector F has been introduced to achieve

further reduction of computing time and storage re-

quirements (see Appendix).

IV. DERIVATION OF THE CAPACITANCE MATRIX

As we now have computed the definite terminal re-

sistance matrix Rt~t for the network in Fig. 4, we have a

simple model for this network, Fig. 5.

Next we introduce the conducting strips at the inter-

face between materials 2 and 3 in Figs. 1 and 4. The

matrix RtOt itself is unaffected by the number of strips,

their widths, and separations. Consider, for instance, the

coupled microstrip in Fig. 1 (b). Let the left-hand strip

cover the nodes with indices from kl to kz and the right-

hand strip the nodes from k~ to k4 in Figs. 4 and 5. Let

V’A denote the potential of the left-hand strip and ~B the

potential of the right-hand one. The injected currents

and voltages in Figs. 4 and 5 should in this case be

chosen such that

vi = vA, forkl<i<k~

vi = VB, fork~<i<kq

I, = O, for l~i<kl, kz<i<kz, andkb<i~ N.

Thus we get

(Rtot)l,lI “ “ I

I I
I 1
I I
I I
I I
I I

“1”” 1””~
I I
I I
I I
I I
I I
I I
I I

.—— –k
y

‘$‘d
‘--’~ 1----

/

———–1 J--, - 4----
I I I I
I I I I
I I I 1
I I I I

— —
--r--’ --v l––––v~4A———— ,__l___&__

I I I I
I I I I
I I I I
I I I I
I I I I
I I I I—

01

o~

0
——
Ik,

Ik,

——

0

— —

Iit,

Ik,

— —

0

n—-1

(17)



589LENNAK’K5SUN : ME’rtlUD FVK CX)M1’UTING TEM CKAKAC~EKISTICS

“f,
l:,<%

.44
1----

W/h5
.5 1.0 1:5

-.,0

J.-
.

Fig. 5. Definite conductance/resistance matrix model of the
network in Fig. 4. “qc~ev=.

P

A/h3= 20 B/h3=10 ~h3=l

hl=O h~/h3=9 W,=~=W

fz=l 63=9,5
As we have no interest in the potential of the nodes out-

side the strips, we can omit rows and columns of RtOt
corresponding to such nodes. Let the remaining part of

Rtot (shadowed in (17)) constitute a new matrix R,,d.

Fig. 6. Impedances and relative phase velocities versus strip width
for the structure in Fig. 1(b) from the a:thor’s program (000),
and according to Judd et al. [10] (— .

Then we have

“(~red)l,l” o I . . . .-

1A = gll~A + g12~13 (21a)
‘Ikl -

Ikl+l

Ik2

——

Ik,

-Ik, -

and
I

~B = g21vA + g22vB (21b)

where gll is the sum of the elements of the upper left sub-

matrix of G,ed in (19), glz is the sum of the elements of. (18).

the upper right submatrix, etc. As Gr,d is symmetric,

g12 = gzl.

Let us now leave network theory and return to the

field problem. QA and Q~ are the charges per unit length

for the left- and right-hand strip, respectively. Then we

have
Obviously there is no reason to compute the elements Ot

QA = CIlVA + c12vB (22a)RtOt that do not occur in R,ed. Let G,~d denote the inverse

of &i, i.e.,
and

QB = G21VA + CYZVB. (22b)

I
From the choice of the network elements (6) it follows

[5] that the relation between the coefficients of (21) and

(22) is

I

VAI (19)——

[

–––––L––– Cij = Cogij. (23)

V. DISCUSSION

The TEM parameters can easily be obtained from the

capacitance matrix /’1 ]. The algorithm presented in this

——
VB

R,,d is a definite resistance terminal matrix, and it is
paper has been us~d for design of nonsymmetrical

coupled microstrip in power dividers and of single mi-

crostrip with satisfactory results. In special case,

coupled microstrip, it has been compared with the

method due to Judd et al. [10]. The differences between

the two methods in impedances and phase velocities

were overall less than 1 percent, see Fig. 6. Three types

of errors have to be considered: errors due to the TEM

assumption, roundoff errors, and errors due to the in-

troduction of the discrete Laplacian. The TEM theory

is exact for low frequencies and the error is of the order

of a few percent at 5 GHz [11 ]. The second type of error

is quite negligible. The author has found that 2–3 signifi-

cant digits were lost, when a 7-digit representation was

used. The errors in the impedances due to the introduc-

tion of the discrete five-point Laplacian have turned

out to be of the order iii, where h is the node separation.

The author has used an hl extrapolation in some cases.

thus necessarily symmetric and positive definite. The

method of inversion due to Cholesky may therefore be

suitable [8]. The Cholesky routines SINV and DSINV

are available in Fortran SSP [9]. SINV has been used

by the author on an IBM 360/65 computer, and 50 x50

matrices, for instance, were inverted in about 2 s.

Let the total currents entering the networks in Figs. 4

and 5 from the left- and right-hand strip be 1A and IB,

respectively, that is

(20a)
k=ki

and

(20b)
k-ks

From (19) we can easily see that
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L–d

H
Fig. 7. A structure having stripsat two interfaces.

When the order of G,Ot was 1000–6000, andthe order of

G,.d 6&loo,” this h,’error was less than 2 percent. (The

hl error always tends to make the computed imped-

ances less than the correct values.)

In this paper only the structure of Fig. 1 (b) has been

considered. However, very little modification is needed

for the analysis of the structures in Fig. 1 (a) and 1 (c).

Three dielectrics are present, but as long as the inter-

faces are parallel planes, the number of dielectrics is

arbitrary. For the structure in Fig. 7 the recurrence

relation (5) has to be slightly modified. The matrices

will be 2i!l X 2~ but can easily be transformed to a

form, where only diagonal submatrices of order ~~x~

have to be inverted.

APPENDIX

We have the relation

where

(7)

Gu = ADUA* (Ala)

and

GZ = ADIA*. (Alb)

From (11) we can see that A is symmetric, and hence

the star denoting the transpose can be omitted, that is

A =A* =A–l = (A*)–l. From (Al) we then have

A GUA = Du and ~ G1/l = ~,, and multiplications of (7)

from left and right by/J yield

e,, -t E,8

AG~.~A = —r APA + AGUA + AGZ.4

[

$.2 + e,,
= diag k; + (Du), + (Dz)t

i=l, N 2 1

or

Gtot = A diag
[

cr~ + cr~

1
——ki+ (D.)t+ (Dl), A.

i=l, N 2

This can be inverted to

[

1
Rt.t = A diag —————————— 1A!

i=l, N

1
‘+jv~t + (D.), + (Dt)i

Let us for a moment introduce

Then

‘v

(A2)
k=l

From (11) and (A2) we now obtain

(Rtot)z,j= &,$ d,,k sin
(&)sin(&) ‘“

:?

and if

()mk~ ml+.

Cos —

F(m) = L5
N+l

N + 1 k=l 6,2 + 6,3
– (16)

—— Ak + (DU)T,+ (Dt)k
2

we have

(Rt.t)i,, = F(i – j) – F(i +j). (15)

As mentioned above, the elements of F and Rto~ have to

be calculated only for indices occurring in the reduced

matrix R,,d.
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Dynamic Behavior of Nonlinear Power Amplifiers in

Stable and Injection-Locked Modes

+.%%
. Abs trac f—Dynamic

YOICHIRO TAKAYAMA

equations of reflection-tvue nonlinear. .
power amplifiers in both st~ble and injection-locked modes are de-

rived for modulated signals. The steady-state response and the

transient response of an injection-locked negative-resistance diode
ampfitier is evaluated. The response for an FM signal is discussed.

Numerical results show that the dynamic behavior as well as the

steady-state behavior is tiected by nonlinearity of the diode con-

ductance and susceptance.

INTRODUCTION

ICROWAVE power amplifiers, including in-

M
j ection-locked ones, using new negative-resis-

tance diodes such as IMPATT diodes and Gunn

effect diodes, have been investigated in recent years.

Steady-state single-frequency responses of nonlinear

power amplifiers in both stablel and injection-locked

modes have been investigated theoretically and experi-

mentally by several authors [1 ]– [3 ]. Nonlinear effects

are expected not only in the steady-state behavior but

also in the dynamic behavior. The dynamic behavior of

injection-locked oscillators or amplifiers was studied, so

far, following Adler’s theory [4]. More recently, Kuno

et al. [5] have presented amplitude and phase equations

evolved by using the nonlinear instantaneous voltage-

controlled device model.

The present purpose is to investigate nonlinear admit-

tance effects on both steady-state and dynamic be-

haviors of nonlinear power amplifiers. Dynamic equa-

tions for reflection-type nonlinear power amplifiers in

Manuscript received November 18, 1971; revised January 28,
1972.
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1 ~~Stable mode ~~is amplification mode where oscillation will not

occur if undriven.

lx v, -1
0
t-
a
J ‘---~-.Y. Y,
2
K

G –-––

Fig. 1. Reflection-type amplifier diagram.

both stable and injection-locked modes were derived for

modulated signals by extending the results evolved from

the method of expansion of the injection-locked oscilla-

tor admittance [2], [6 ]– [8 ]. The steady-state responses

and the transient responses of an injection-locked am-

plifier were evaluated by sample calculations on the sim-

plified model of a negative-resistance diode amplifier.

The response for an FM signal is also discussed.

DYNAMIC EQUATIONS

The reflection-type amplifier uses a circulator to pro-

vide input–output isolation. The basic network used for

analysis is shown in Fig. 1, where VI and V2 are the inci-

dent and reflected voltage waves at reference plane A.
The active network (whose admittance is Yl), including

the negative-resistance diode, is connected to a matched

circulator through the Iossless transmission line with

characteristic admittance Yo.

VI and the ac

dal with slowly

expressed by

voltage V3 across Yl, which are sinusoi-

varying amplitude and phase, can be

VI = pl(~)e@t+a(t))

V$ = i78(t)e~(wt+o‘i)) (1)


