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A Network Ana|ogue Method for Computing the

TEM

Characteristics of Planar Transmission Lines

BENGT L. LENNARTSSON, STUDENT MEMBER, IEEE

Abstract=—A network analogue method for calculation of the
capacitance matrix of certain two-dimensional multiconductor sys-
tems is presented. The system is contained in a finite or infinite
conducting rectangular boundary. An arbitrary number of parallel
dielectric layers can be present, and the conductors consist of an
arbitrary number of conducting strips at one or more of the dielectric
interfaces. The strips are assumed to have zero thickness.

I. INTRODUCTION

UNDER THE QUASI-TEM assumption the

! ’ different impedances and phase velocities for
planar transmission lines can be calculated from

the static capacitance matrix of the conductor system
[1]. Hence the analysis is reduced to the problem of
finding a solution of the two-dimensional Laplace’s
equation under the actual boundary conditions. In
many cases, however, a complete solution of Laplace’s
equation is not necessary. If, for instance, a Green func-
tion can be found, this contains all the information
needed for the derivation of the capacitance matrix.
Bryant and Weiss [2] and Weeks [3] have computed a
“dielectric Green function” from an integral equation.
Yamashita and Atsuki [4] have derived trigonometric
series expressions of a Green function for structures
similar to those in Fig. 1. In this paper the capacitance
matrix is obtained via an entirely different approach,
the resistance network analogue. Network theory makes
it possible to reduce a set of difference equations with
millions of unknown potentials to a system of say one
hundred variables and, moreover, network theory sug-
gests ways to solve this latter system by direct methods.

1I. DERIVATION OF THE Basic MATRIX RELATIONS

The five-point discrete Laplacian relates the potential
at adjacent points in Fig. 2(a) according to (1).

®, + &y + &, + b3 — 4P, = 0. (1)

Equation (1) is also the node equation of node “o” in
Fig. 2(b). Hence if any advantages can be obtained one
may solve a network problem instead of the correspond-
ing Laplace’s difference equations. The potential dis-
tribution will be the same [5]. This idea has been used
for simulation of boundaries on a network model, but
also as a tool for a purely analytical approach [6].
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Fig. 1. Planar transmission lines, strips at one interface only.
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Fig. 2. The nodes of (a) the finite difference problem,

and (b) the related network.

Now let us consider the networks in Fig. 3. The
boundaries are at zero potential and the resistance and
conductance matrices are VX N. The definite terminal
resistance matrix R; in Fig. 3(a) is simply n E, where E is
the VXV unit matrix, and the resistance of each resis-
tor is 1. In Fig. 3(b) a network has been connected in
parallel to that in Fig. 3(a). The matrix G; is thus the
sum of R;~! and the conductance matrix of the chain
constituted by the elements g;. From basic circuit theory
we have

Gy = R+ gP (2)
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Fig. 3. Networks illustrating the recurrence relations (2) and (4).

where P is the tri-diagonal matrix

2—-1 0 - - - =0
-1 2-1 0 -
0 -1 2 —1 0 -
- 0-1 2 -1 0 -
p= NE))
- 0 —1 2 —1
0O - - - - 0 -1 2

In Fig. 3(c) resistors 7, are connected in series to each
terminal of the network in Fig. 3(b). Hence

Ry =G '+ nE =R+ gP* + nE.  4)

The same procedure will be repeated when we connect a
conductance chain g, in parallel, a set of resistors in se-
ries, etc. The recurrence relation can obviously be written

Ry = [Rk_l =+ ng]ﬁ1 + B (5a)
where

Ry = nk. (Sb)
For the network analogue of the structures in Fig. 1 a
proper choice of the network elements [5] is

1
gk=——=€7'
Yk

(62)

where ¢, =¢,, for elements corresponding to material 1,
etc., and

€ry + €y
2

& = (6b)

at the interface between materials 1 and 2, etc. ,, €,
and e, are the equivalent relative dielectric constants of
the materials.

Fig. 4 shows the network corresponding to the struc-
tures in Fig. 1. The matrix Gy relates the potentials of
the nodes at the lower interface to the currents entering
these nodes, and G+ can be decomposed according to

587

LUy
I

Fig. 4. A network analogue of the field problems in Fig. 1.

o

Gtot = i—“ P + Gl + Gu (7)

where the first term represents the chain at the inter-
face, the second the network below, and the third the
network above. G, and G, are obtained from (5) and (6).
For instance, G,=R;"!, where k=H1+H2 and G;
=Ryus! (Fig. 4). 7+ and g; are chosen according to (6).
The matrix Gy relates the terminal voltages to the ter-
minal currents in Fig. 4.

In the following, the recurrence relation (5a) is trans-
formed to diagonal form, and since inversion of a diago-
nal matrix just means inversion of its diagonal elements,
the computing time can be reduced considerably.

111. DIAGONALIZATION OF THE RECURRENCE RELATION

As P is symmetric, see (3), there is an orthogonal
matrix 4 such that

A*PA = diag (A, Ae, = -+, M) (8a)

and

A*¥4 = E (8b)

where the star denotes the transpose, and N; are the
eigenvalues of P, The column vectors of 4 are the re-
lated normalized eigenvectors »;. Analytic expressions
for v; and \; are known [7] and

A = 4sin? [wz(zvi: 1)} ©)

Vi ()
sin .
N +1 N +1

2 . ijr
4/N " <N T 1)'

From (5a) we now obtain by elementary matrix algebra
A*Ripi A = [(A*R,A)~' + g diag (\i, Ngy + -, Aw) |1
-l‘ ?’k+1E. (12)

Since R;=nE, it follows from (8b) that the right-hand
side of (12) is diagonal for k=1, and thus the left mem-
ber is also diagonal for £k =1. Hence the right member is

('Ui)j = (10)

Thus

(A)i; = (1)
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diagonal for k=2, and from mathematical induction it

now follows that 4 *R,4 is diagonal for each k. If we

introduce the vector (a*); according to

(0¥); = (A*¥Ry4):.;

i=1,2--+,N

(13)

we can replace the matrix relation (5) by the much

simpler vector relation

1

(ak+l)i = + 741,

+ @i

(®)s
where

(&) = r,

i=1,2---,N.

i=1,2,--+,N (l4a)

(14b)

If H1 or H3 in Fig. 4 is infinite, it is easy to obtain the

limit as B— o in (14a).

As an analytical expression for the eigenvalues \; of P
is known, (14) are now well prepared for computer work.
It remains to compute Gy, (7), or better its inverse Riot.

That is done in the following way.

1) Let the computer perform (14) for k=1, 2, - - -,
H1+4H2—1. r, and g are obtained from (6a) and (6b).
For convenience let us denote the resulting vector of this

procedure D,.

2) Let the computer perform (14) for k=1, 2, - - -,
H3—1, where 7, and g, are chosen according to (6a).

Denote the resulting vector D,.

The elements of the matrix Rios = Giot ! are now ac-
cording to the Appendix obtained from

(Reot)ss = F& — §) — F(i +7)

(15)

Vi
Ve

Vkl-—l

—

—(Rtot) 1,1

N

I

where
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+5)

Cos

N+1

€T2 + e'rg

——2—— A+ (Du)e + (D

1

Fm) = 51

(16)

I

The auxiliary vector F has been introduced to achieve
further reduction of computing time and storage re-
quirements (see Appendix).

IV. DERIVATION OF THE CAPACITANCE MATRIX

As we now have computed the definite terminal re-
sistance matrix Ry for the network in Fig. 4, we have a
simple model for this network, Fig. 5.

Next we introduce the conducting strips at the inter-
face between materials 2 and 3 in Figs. 1 and 4. The
matrix Ryt itself is unaffected by the number of strips,
their widths, and separations. Consider, for instance, the
coupled microstrip in Fig. 1(b). Let the left-hand strip
cover the nodes with indices from &; to ks and the right-
hand strip the nodes from k; to k4 in Figs. 4 and 5. Let
Va denote the potential of the left-hand strip and Vg the
potential of the right-hand one. The injected currents
and voltages in Figs, 4 and 5 should in this case be
chosen such that

Vi=Va, fork <i<k
V,;—VB, fOI‘k3S’I;_<_k4
I;=0, for 1 <i<b,by<i<kgandks<i<N.
Thus we get
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LENNARTSSON:

Fig. 5. Definite conductance/resistance matrix model of the
network in Fig. 4.

As we have no interest in the potential of the nodes out-
side the strips, we can omit rows and columns of Ry
corresponding to such nodes. Let the remaining part of
R (shadowed in (17)) constitute a new matrix Ryeq.
Then we have

[~ Va7 [ (Reed)1rs - : SR | NV PR
VA : Ik1+1
. | :
14 | I
A - : kg (18)
|
Vs I I,
. | :
L. VB -~ L | - _Ik4 -

Obviously there is no reason to compute the elements of
Riot that do not occur in R,eq. Let G,eq denote the inverse
Of Rieq, i€,

Lk, ] [(Gred)ia- -1 - - - T Va ]
{k1+1 } VA
. i ﬁ
Ik, = . { Va (19)
T N | e
: .
o, 1 L | ALvs |

R..q is a definite resistance terminal matrix, and it is
thus necessarily symmetric and positive definite. The
method of inversion due to Cholesky may therefore be
suitable [8]. The Cholesky routines SINV and DSINV
are available in Fortran SSP [9]. SINV has been used
by the author on an IBM 360/65 computer, and 50X 50
matrices, for instance, were inverted in about 2 s.

Let the total currents entering the networks in Figs. 4
and § from the left- and right-hand strip be 74 and I3,
respectively, that is

ke
2 I

IA = (203.)
Femky
and
k4
Is = > I (20b)

k=kg

From (19) we can easily see that

589

Y4
100#
w/ns

‘40‘ \N‘_‘_‘_‘
vP/c "~
A/h3=20 B/hg=10 S/ng=1
h=0 ha/hg=9 Wy=Wo=W
€2=1 63=9.5
Fig. 6. Impedances and relative phase velocities versus strip width

for the structure in Fig. 1(b) from the author s program (000),
and according to ]udd et al. [10] ¢

Ia = guVa+ g12Vs (21a)

and
Ip = gaaVa+ g2V (21b)

where gy; is the sum of the elements of the upper left sub-
matrix of Greq in (19), g1z is the sum of the elements of
the upper right submatrix, etc. As G.q is symmetric,
£12 =ga1.

Let us now leave network theory and return to the
field problem. Q4 and Q5 are the charges per unit length
for the left- and right-hand strip, respectively. Then we
have

Q4 = ctiVa + c12Ve (22a)

and
Oz = ¢V + c22Vs.

From the choice of the network elements (6) it follows
[5] that the relation between the coefficients of (21) and
(22) is

(22b)

(23)

Cij = €045

V. Discussion

The TEM parameters can easily be obtained from the
capacitance matrix [1]. The algorithm presented in this
paper has been used for design of nonsymmetrical
coupled microstrip in power dividers and of single mi-
crostrip with satisfactory results. In special case,
coupled microstrip, it has been compared with the
method due to Judd et al. [10]. The differences between
the two methods in impedances and phase velocities
were overall less than 1 percent, see Fig. 6. Three types
of errors have to be considered: errors due to the TEM
assumption, roundoff errors, and errors due to the in-
troduction of the discrete Laplacian. The TEM theory
is exact for low frequencies and the error is of the order
of a few percent at 5 GHz [11]. The second type of error
is quite negligible. The author has found that 2-3 signifi-
cant digits were lost, when a 7-digit representation was
used. The errors in the impedances due to the introduc-
tion of the discrete five-point Laplacian have turned
out to be of the order %!, where £ is the node separation.
The author has used an k' extrapolation in some cases.
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Fig. 7. A structure having strips at two interfaces.

When the order of Gyt was 1000-6000, and the order of
Grea 60-100, this ' error was less than 2 percent. (The
h' error always tends to make the computed imped-
ances less than the correct values.)

In this paper only the structure of Fig. 1(b) has been
considered. However, very little modification is needed
for the analysis of the structures in Fig. 1(a) and 1(c).
Three dielectrics are present, but as long as the inter-
faces are parallel planes, the number of dielectrics is
arbitrary. For the structure in Fig. 7 the recurrence
relation (5) has to be slightly modified. The matrices
will be 2NX2N but can easily be transformed to a
form, where only diagonal submatrices of order N XN
have to be inverted.

APPENDIX

We have the relation

e T €r
G =21 py G, + G, ©)
where
G, = AD,A* (Ala)
and
G, = AD;A*. (Alb)

From (11) we can see that 4 is symmetric, and hence
the star denoting the transpose can be omitted, that is
A=A*=4"1=(4*)~'. From (A1) we then have
AGuA =D, and 4G4 =D;, and multiplications of (7)
from left and right by 4 vield

€ry + €ry

AGird = APA + AG,A + AGA

I

diag

te=1,N

.
[——2— N+ (D) + (DD ]

or

. €ry + €rg
Gtoﬁ = A dlag [ 2 —)\1+ (Du)b‘f— (Dl%]A

=1,N
This can be inverted to

1
Ry, = A diag l_ A.

T+ (D) + (D)

i1,V | €y T
Ny
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Let us for a moment introduce

1
dii = "
ETz e‘l‘3
N+ (Du)i+ (D)
Then
N
(Riot) i = 2 (A)upii( A 5. (A2)
k=1
From (11) and (A2) we now obtain
2 N ik jkw >
R ot)1,j = dn‘ 3 1 1
(Riot)s,j frn 15 “sm<N+ 1) sin <N—i— i)
1 N i — Dk : + )k
= Z dk,k [COS (/L ]) T — COSs (l ]) Tj!
N+ 1.5 N+ 1 N+ 1
and if
mkw
1 N o8 <N + 1)
Fom = 573 + (16)
—1 €ry €y
= M+ (D + (D
we have
(Rtﬂt)id = F<i '—]) - F@ +]) (15)

As mentioned above, the elements of F and Ry, have to
be calculated only for indices occurring in the reduced
matrix Ryeq.
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Dynamic Behavior of Nonlinear Power Amplifiers in

Stable and Injection-Locked Modes

YOICHIRO TAKAYAMA

Abstract—~Dynamic equations of reflection-type nonlinear
power amplifiers in both stable and injection-locked modes are de-
rived for modulated signals. The steady-state response and the
transient response of an injection-locked negative-resistance diode
amplifier is evaluated. The response for an FM signal is discussed.
Numerical results show that the dynamic behavior as well as the
steady-state behavior is affected by nonlinearity of the diode con-
ductance and susceptance.

INTRODUCTION
MICROWAVE power amplifiers, including in-

jection-locked ones, using new negative-resis-

tance diodes such as IMPATT diodes and Gunn
effect diodes, have been investigated in recent years.
Steady-state single-frequency responses of nonlinear
power amplifiers in both stable! and injection-locked
modes have been investigated theoretically and experi-
mentally by several authors [1]-[3]. Nonlinear effects
are expected not only in the steady-state behavior but
also in the dynamic behavior. The dynamic behavior of
injection-locked oscillators or amplifiers was studied, so
far, following Adler’s theory [4]. More recently, Kuno
et al. [5] have presented amplitude and phase equations
evolved by using the nonlinear instantaneous voltage-
controlled device model.

The present purpose is to investigate nonlinear admit-
tance effects on both steady-state and dynamic be-
haviors of nonlinear power amplifiers. Dynamic equa-
tions for reflection-type nonlinear power amplifiers in

7Manuscript received November 18, 1971; revised January 28,
1972.
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1 “Stable mode” is amplification mode where oscillation will not
occur if undriven.

CIRCULATOR

Fig. 1. Reflection-type amplifier diagram.

both stable and injection-locked modes were derived for
modulated signals by extending the results evolved from
the method of expansion of the injection-locked oscilla-
tor admittance [2], [6]-[8]. The steady-state responses
and the transient responses of an injection-locked am-
plifier were evaluated by sample calculations on the sim-
plified model of a negative-resistance diode amplifier.
The response for an FM signal is also discussed.

Dy~xaMmic EQUATIONS

The reflection-type amplifier uses a circulator to pro-
vide input-output isolation. The basic network used for
analysis is shown in Fig. 1, where Vi and V; are the inci-
dent and reflected voltage waves at reference plane 4.
The active network (whose admittance is ¥3), including
the negative-resistance diode, is connected to a matched
circulator through the lossless transmission line with
characteristic admittance Y.

V1 and the ac voltage V; across ¥, which are sinusoi-
dal with slowly varying amplitude and phase, can be
expressed by

Vi
Vs

171(1}) gilwtta(®))
TV o(t)eitwrso e 1)

I



